МЕДИКО-БИОЛОГИЧЕСКИЕ НАУКИ

ОРИГИНАЛЬНЫЕ СТАТЬИ

УДК 547.853:615.225:616.13

3.3.6 Фармакология, клиническая фармакология

DOI: 10.37903/vsgma.2021.4.1

АНТИОКСИДАНТНЫЕ, АНТИРАДИКАЛЬНЫЕ, ХЕЛАТИРУЮЩИЕ СВОЙСТВА МЕКСИДОЛА И ПРОИЗВОДНОГО ПИРИМИДИНА PIR-4 В УСЛОВИЯХ ЭКСПЕРИМЕНТАЛЬНОЙ ЦЕРЕБРАЛЬНОЙ ИШЕМИИ МОЗГА КРЫС

© Шабанова Н.Б.¹, Геращенко А.Д.¹, Лысенко Т.А.¹, Воронков А.В.²

Резюме

Цель. Изучение антиоксидантной, антирадикальной и хелатирующей активностей нового производного пиримидина – PIR-4 при экспериментально смоделированной фокальной ишемии головного мозга крыс.

Методика. Исследование реализовано на крысах-самцах линии Wistar массой 220-240 г. Были сформированы 4 равные группы по 10 особей в каждой. Первая группа – ложнооперированные животные, вторая – группа крыс негативного контроля, обе получали взвесь воды очищенной с твином-80 в эквивалентном объеме. Третья группа представлена крысами, получавшими референтный препарат – мексидол (50 мг/кг). Четвертой группе вводили экспериментальное соединение под шифром PIR-4 (50 мг/кг). Все исследуемые объекты вводились внутрибрюшинно сразу после моделирования ишемии и в течение 3-х суток. Локальную церебральную ишемию моделировали коагуляцией левой средней мозговой артерии (наркоз – хлоралгидрат, 350 мг/кг)).

Результаты. На фоне смоделированной цереброваскулярной патологии возрастает количество продуктов свободнорадикального окисления (диеновых конъюгатов (ДК) и малонового диальдегида (МДА)) при снижении ферментов первой линии антиоксидантной защиты (АОЗ) (супероксиддисмутазы, глутатионпероксидазы, каталазы). Внутрибрюшинное введение мексидола (50 мг/кг) позволило скорректировать данные нарушения, за счёт повышения активности системы антиоксидантной и антирадикальной защиты и снижения продуктов перекисного окисления липидов. Введение экспериментального вещества PIR-4 также позволило снизить количество ДК и МДА, оказывая прямое антиоксидантное действие, при этом, не влияя на систему эндогенной АОЗ, что в значительной мере минимизирует риски развития нарушений церебральной гемодинамики.

Заключение. В ходе проведенного исследования было установлено, что соединение PIR-4 проявляет прямое антиоксидантное действие, не только снижая гиперпродукцию свободных радикалов, но и проявляя антирадикальные и хелатирующие свойства, при этом, не влияя на сами ферменты защиты антиоксидантной системы и по своему эффекту не уступает препарату сравнения мексидолу.

Ключевые слова: фокальная ишемия головного мозга, нарушения церебральной гемодинамики, антиоксидантная активность, антирадикальная активность, хелатирующие свойства, мексидол, производные пиримидина

ANTIOXIDANT, ANTI-RADICAL, CHELATING PROPERTIES OF MEXIDOL AND PYRIMIDINE DERIVATIVE PIR-4 IN EXPERIMENTAL CEREBRAL ISCHEMIA OF THE RAT BRAIN Shabanova N.B.¹, Gerashchenko A.D.¹, Lysenko T.A.¹, VoronkovA.V.²

¹Pyatigorsk Medical and Pharmaceutical Institute – a branch of the Volgograd State Medical University of the Ministry of Health of Russia, 357532, Russia, Pyatigorsk, Kalinin Ave., l. eleven ²Volgograd State Medical University, 400131, Russia, Volgograd, pl. Fallen Fighters, 1

Abstract

Objective. To study the antioxidant, anti-radical and chelating activities of a new pyrimidine derivative-PIR-4 in experimentally simulated focal cerebral ischemia in rats.

¹Пятигорский медико-фармацевтический институт – филиал ФГБОУ ВО «ВолгГМУ», Россия, 357532, Пятигорск, пр. Калинина, л. 11

 $^{^2}$ Волгоградский государственный медицинский университет, Россия, 400131, Волгоград, ул. Горького, 80

Methods. The study was carried out on male Wistar rats weighing 220-240 gr. 4 equal groups of 10 individuals each were formed. The first group – falsely operated animals, the second - a group of negative control rats, both received a suspension of water purified with twin-80 in an equivalent volume. The third group is represented by rats receiving a reference drug-Mexidol (50 mg/kg). The fourth group was administered an experimental compound under the code PIR-4 (50 mg/kg). All the studied objects were injected intraperitoneal immediately after the ischemia simulation and within 3 days. Local cerebral ischemia was modeled by coagulation of the left middle cerebral artery (anesthesia-chloral hydrate, 350 mg/kg)).

Results. The results showed that against the background of simulated cerebrovascular pathology, the number of free radical oxidation products (diene conjugates (DC) and Malon dialdehyde (MDA)) increases with a decrease in the first-line antioxidant defense enzymes (AOS) (superoxide dismutase, glutathione peroxidase, catalase). Intraperitoneal administration of Mexidol (50 mg/kg) allowed to correct these violations by increasing the activity of the antioxidant and anti-radical protection system and reducing the products of lipid peroxidation. The introduction of the experimental substance PIR-4 also allowed to reduce the amount of DC and MDA, providing a direct antioxidant effect, while not affecting the endogenous AOS system, which significantly minimizes the risks of developing disorders of cerebral hemodynamics.

Conclusions. In the course of the study, it was found that the PIR-4 compound shows a direct antioxidant effect, not only reducing the hyperproduction of free radicals, but also showing anti-radical and chelating properties, while not affecting the enzymes themselves protecting the antioxidant system and its effect is not inferior to the comparison drug Mexidol.

Keywords: focal cerebral ischemia, disorders of cerebral hemodynamics, antioxidant activity, antiradical activity, chelating properties, Mexidol, pyrimidine derivatives

Введение

Ишемическое повреждение головного мозга тесно сопряжено со сдвигом равновесия в системе биологического окисления в сторону образования активных форм кислорода и ослабления резервов антиоксидантной защиты организма [5, 17]. Окислительный стресс способствует развитию патобиохимических изменений глутамат-кальциевого каскада, тем самым повышая риск развития и усугубляя течение ишемии [9]. Неспособность организма поддерживать про/антиоксидантный баланс при нарушениях церебральной гемодинамики делает актуальным целенаправленный поиск церебропротекторных средств, одним из механизмов действиях которых будет наличие антиоксидантной и антирадикальной активностей [1]. В качестве таких соединений можно рассмотреть производные пиримидина, так как ранее у них было доказано наличие церебропротекторных и антигипоксических свойств [7, 16]. Кроме того, некоторые дериваты пиримидина проявили антиоксидантные свойства в условиях экспериментальной черепномозговой травмы [1].

Целью исследования явилось изучение антиоксидантных, антирадикальных и хелатирующих свойств мексидола и производного пиримидина PIR-4 в условиях экспериментальной церебральной ишемии мозга крыс.

Методика

Лабораторные крысы получены из вивария ПМФИ-филиала ФГБОУ ВО ВолгГМУ МЗ РФ. Все манипуляции, производимые над животными, выполнены в соответствии международными нормами экспериментальной этики (Европейская конвенция по защите позвоночных животных, используемых для экспериментальных и других научных целей (Strasbourg, 22 June, 1998)) и с требованиями лабораторной практики (GLP). Особи помещались в макролоновые клетки со стальными решетчатыми крышками и кормовым углублением. Подстилочным материалом служили нехвойные древесные опилки. На протяжении всего эксперимента особи содержались при естественном освещении, на стандартном рационе питания со свободным доступом к пище и воде (влажность 65±5%, температура воздуха 22±2°C)..

Исследование проведено на 40 крысах-самцах линии Вистар массой 220-240 г. Особей разделили на 4 группы по 10 животных. Первая группа представлена ложнооперированными крысами (ЛО), вторая – животные негативного контроля (НК). Обеим группам вводили внутрибрюшинно взвесь твина-80 в воде очищенной. Третья группа получала референтный препарат мексидол в дозе 50 мг/кг [4]. Четвертой группе вводили производное пиримидина PIR-4 в дозе 50 мг/кг [2]. Исследуемое вещество, препарат сравнения и воду очищенную с твином-80 вводили

внутрибрюшинно сразу после операции и в течение трех суток ежедневно. Фокальную церебральную ишемию воспроизводили окклюзией левой средней мозговой артерии (ОЛСМА), путем ее коагуляции [13]. Наркозным средством выступал хлоралгидрат, 350 мг/кг. Через 72 ч. животных декапитировали, быстро извлекали головной мозг с целью получения гомогената для дальнейшего исследования.

В гомогенате головного мозга оценивали содержание диеновых конъюгатов (ДК) на основе классического метода Z. Placer (1968) в модификации В.Б. Гаврилова, М.И. Мишкорудной (1983), а также ТБК-активных продуктов в пересчете на малоновый диальдегид (МДА) [8]. В постъядерной фракции гомогената головного мозга определяли активность ферментов эндогенной антиоксидантной защиты (АОЗ): супероксиддисмутазы (СОД) [10], каталазы [5], глутатионпероксидазы (ГП) [15]. На моделях in vitro изучали Fe²⁺-хелатирующую [12], супекроксид-антирадикалькую [17] и нитрозил-антирадикальную [14] виды активностей.

Результаты обрабатывали с помощью пакета прикладных программ STATISTICA 6.0 (StatSoft, Inc., США, для операционной системы Windows) и Microsoft Excel 2010. Определяли среднее значение и его стандартную ошибку (М±т). Нормальность распределения оценивали критерием Shapiro-Wilk. Параметрический T-test Student использовался при нормальном распределении данных. В случае распределения, отличающегося от нормального, статистическая обработка проводилась U-test Mann-Whitney. Отличия считали достоверными при уровне значимости более 95% (p<0,05).

Результаты исследования и их обсуждения

Фокальная церебральная ишемия способствовала увеличению продуктов перекисного окисления липидов (ПОЛ): диеновых конъюгатов на 280,56% (p<0,05), малонового диальдегида на 106,83% (p<0,05) у нелеченых крыс, в сравнении с ложнооперированными особями (рис. 1). Кроме того, у животных группы негативного контроля, отмечалось снижение ферментов антиоксидантной защиты: супероксиддисмутазы и глутатионпероксидазы на 25,2% (p<0,05) и 49,95% (p<0,05) соответственно (рис. 2), а также повышалось содержание каталазы на 151,61% (p<0,05) (табл. 1), относительно ЛО крыс. Совокупность полученных данных может свидетельствовать о неспособности системы эндогенной антиоксидантной защиты в полной мере справиться с завышенным уровнем оксидантов, и, как следствие, нарушении равновесия в системе «про/антиоксиданты» в условиях фокальной ишемии головного мозга крыс [5].

Как видно из рис. 1, на фоне применения референтного препарата мексидола уровень ДК и МДА снизился на 53,21% (p<0,05) и 39,55% (p<0,05) относительно группы крыс без фармакологического поддержки. Аналогичная положительная тенденция отмечена и после внутрибрюшинного введения производного пиримидина PIR-4, так содержание диеновых конъюгатов было меньше на 57,26% (p<0,05) и малонового диальдегида на 37,62% (p<0,05) в сравнении с группой крыс НК. Статистически значимых отличий по данным показателям между группами животных, получавших мексидол и PIR-4, отмечено не было.

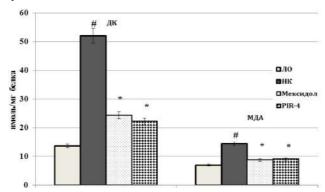


Рис. 1. Содержание диеновых конъюгатов и малонового диальдегида в гомогенате головного мозга крыс на фоне введения мексидола и PIR-4 в условиях фокальной церебральной ишемии. # – статистически значимо относительно ложнооперированных крыс (p<0,05); * – статистически значимо относительно крыс негативного контроля (p<0,05). ДК – диеновые конъюгаты; МДА – малоновый диальдегид; ЛО – группа ложнооперированных крыс; НК – группа крыс негативного контроля; Мексидол – группа крыс, получавших мексидол (50 мг/кг); PIR-4 – группа крыс, получавших производное пиримидина PIR-4 (50 мг/кг)

Содержание СОД и ГП после внутрибрюшинного введения мексидола составило 229,88±3,5 ед.акт/мг.белка и 206,01±4,73 ед.акт/мг.белка, что на 20,4% (p<0,05) и 33,96% (p<0,05) было выше показателей группы нелеченых особей, однако данные значения на 9,94% (p<0,05) и 32,95% (p<0,05) соответственно были достоверно ниже аналогичных показателей группы ложнооперированных крыс (рис. 2). Как видно из табл/ 1 уровень каталазы в постъядерной фракции гомогената головного мозга на фоне получения мексидола был выше, чем у группы крыс, не подверженных фармакотерапии, однако достоверных отличий по данному показателю не отмечено.

Введение животным производного пиримидина PIR-4 не способствовало увеличению содержания супероксиддисмутазы, при этом данный показатель был статистически значимо ниже всех изучаемых групп: ЛО – на 27,43% (p<0,05), НК – на 2,98% (p<0,05), мексидола – на 19,42% (p<0,05). Также на фоне получения PIR-4 отмечено снижение уровня глутатионпероксидазы (относительно группы крыс НК на 77,33% (p<0,05), ЛО - на 88,65% (p<0,05), мексидола - на 83,08% (p<0,05)). Стоит отметить, что при этом активность каталазы на фоне введения животным соединения PIR-4 сохранилась на уровне ложнооперированных крыс и составила 0,44±0,03 нмоль/мин/мг белка. Относительно группы крыс НК этот показатель был ниже на 43,59% (p<0,05), в сравнении с группой крыс, получавших мексидол на 58,88% (p<0,05).

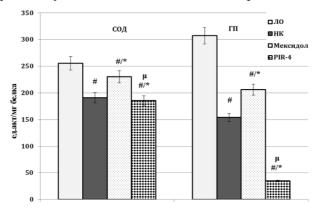


Рис. 2. Содержание супероксиддисмутазы и глутатионпероксидазы в постъядерной фракции гомогената головного мозга крыс на фоне введения мексидола и PIR-4 в условиях фокальной церебральной ишемии. # – статистически значимо относительно ложнооперированных крыс (p<0,05); * – статистически значимо относительно крыс негативного контроля (p<0,05); μ – статистически значимо относительно группы крыс, получавших мексидол (p<0,05). СОД – супероксиддисмутаза; ГП – глутатионпероксидаза; ЛО – группа ложнооперированных крыс; НК – группа крыс негативного контроля; Мексидол – группа крыс, получавших мексидол (50 мг/кг); PIR-4 – группа крыс, получавших производное пиримидина PIR-4 (50мг/кг)

Полученные данные возможно связаны с тем, что СОД действуя на свободные формы кислорода, превращает их в пероксид водорода, а затем ГП и каталаза, вероятно, нейтрализуют образовавшуюся перекись водорода, что может приводить к снижению ферментов эндогенной АОЗ на фоне уменьшения генерации самих свободных радикалов. Тогда как, снижение продуктов перекисного окисления липидов при введении крысам соединения РІК-4 на фоне церебральной патологии, позволяет предполагать, что изучаемое производное пиримидина снижает генерацию свободных радикалов, не активируя систему АОЗ, что явилось предпосылкой к изучению его антирадикальных и хелатирующих свойств.

Таблица 1. Содержание каталазы в постъядерной фракции гомогената головного мозга крыс на фоне ввеления мексилола и PIR-4 в условиях фокальной перебральной ишемии

pone brazilim mentengone in that it by problem ponembron geperpension in the minima				
Группа	ЛО	НК	Мексидол	PIR-4
Каталаза, нмоль/мин/мг белка	0,31±0,02	0,78±0,17#	1,07±0,13#	0,44±0,03*/μ

Примечание: # – статистически значимо относительно ложнооперированных крыс (p<0,05); * – статистически значимо относительно крыс негативного контроля (p<0,05); µ – достоверно относительно группы крыс, получавших мексидол (p<0,05). ЛО – группа ложнооперированных крыс; НК – группа крыс негативного контроля; Мексидол – группа крыс, получавших мексидол (50 мг/кг); PIR-4 – группа крыс, получавших производное пиримидина PIR-4 (50 мг/кг)

Далее были изучены антирадикальные и хелатирующие свойства соединения PIR-4 в сравнении с мексидолом, так как данные вещества ранее проявили активность в отношении продуктов ПОЛ, целесообразно предположить наличие у них способности к торможению супероксид и нитрозил анион-радикалов, а также к образованию комплексов с ионами двухвалентного железа.

Мексидол проявляет антирадикальную активность, что проявляется в подавлении супероксиди нитрозил-радикалов на $30,61\pm0,47\%$ и $35,05\pm0,31\%$ соответственно. Также у мексидола выявлена способность образовывать стойкие комплексы с ионами Fe^{2+} , что подтверждается данными литературы.

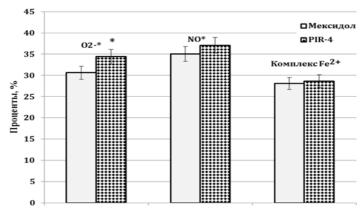


Рис. 3. Антирадикальные и хелатирующие свойства мексидола и PIR-4 в условиях фокальной церебральной ишемии. * – статистически значимо относительно мексидола (p<0,05)

Производное пиримидина PIR-4 подавило генерацию супероксид анион-радикала на 34,41±1,5%, что на 12,41% (p<0,05) превысило значение группы мексидола. Анти-NO-радикальные свойства соединения PIR-4 проявились в подавлении данного радикала на 37,08±1,37%. Кроме того, вещество PIR-4 наравне с мексидолом способно к комплексообразованию с ионами железа (II), что также свидетельствует о наличие у него хелатирующих свойств.

Выводы

- 1. Экспериментальная фокальная ишемия мозга нарушает равновесие в системе антиоксидантной защиты, что проявляется в увеличении продуктов ПОЛ (ДК и МДА на 280,56% (p<0,05) и 106,83% (p<0,05)), снижении ферментов защиты (СОД и ГП на 25,2% (p<0,05) и 49,95% (p<0,05)), повышении уровня каталазы на 151,61% (p<0,05) у группы нелеченых крыс относительно ложнооперированных животных.
- 2. Внутрибрюшинное введение мексидола (50 мг/кг) активирует систему антиоксидантной защиты, что можно заметить в снижении ДК И МДА (на 53,21% (p<0,05) и 39,55% (p<0,05) соответственно) и повышении СОД и ГП на 20,4% (p<0,05) и 33,96% (p<0,05) относительно НК группы крыс, без достоверного повышения уровня каталазы. Помимо этого, у мексидола выявлена активность в отношении супероксид- и нитрозил-радикалов, а также способность к комплексообразованию с Fe²⁺.
- 3. Изучаемое производное пиримидина PIR-4 в условиях церебральной фокальной ишемии способствует снижению уровня продуктов ПОЛ (МДА на 57,26% (p<0,05) и ДК на 37,62% (p<0,05)), без увеличения содержания ферментов эндогенной антиоксидантной защиты. Можно предполагать, что данное соединение обладает прямым антиоксидантным действием, не только снижая гиперпродукцию свободных радикалов, но и проявляя антирадикальные и хелатирующие свойства, при этом, не влияя на сами ферменты защиты антиоксидантной системы.

Литература (references)

1. Воронков А.В., Хури Е.И., Поздняков Д.И. и др. Антиоксидантная активность производных пиримидин-4(1H)-она при черепно-мозговой травме в условиях эксперимента // Экспериментальная и клиническая фармакология. — 2019. — Т.82, №1. — С. 8-10. [Voronkov A.V., Huri E.I., Pozdnyakov D.I. i dr.

- *Eksperimental'naya i klinicheskaya farmakologiya*. Experimental and clinical pharmacology. 2019. V.82, N1. P. 8-10. (in Russian)]
- 2. Воронков А.В., Шабанова Н.Б., Воронкова М.П., Лысенко Т.А. Изучение дозозависимого церебротропного эффекта производного пиримидина под шифром PIR-9 на фоне экспериментальной ишемии головного мозга крыс // Фармация и фармакология. 2018. Т.6, №.6. С. 548-567. DOI: 10.19163/2307-9266-2018-6-6-548-567. [Voronkov A.V., Shabanova N.B., Voronkova M.P., Lysenko T.A. Farmaciya i farmakologiya. Pharmacy and Pharmacology. 2018. V.6, N6— P. 548-567. DOI: 10.19163/2307-9266-2018-6-6-548-567. (in Russian)]
- 3. Гаврилов В.Б., Мишкорудная М.И. Спектрофотометрическое определение содержания гидроперекисей липидов в плазме крови // Лабораторное дело. 1983. №3. С. 33-35. [Gavrilov V.B., Mishkorudnaya M.I. *Laboratornoe delo*. Laboratory work. 1983. №3. Р. 33-35. (in Russian)]
- 4. Инчина В.И., Коршунова А.Б., Просвиркина И.А. Сравнительная оценка некоторых эффектов производных 3-оксипиридина и пиримидина в эксперименте // Вестник новых медицинских технологий. 2010. Т.17,№3. С. 158-160. [Inchina V.I., Korshunova A.B., Prosvirkina I.A. *Vestnik novyh medicinskih tekhnologij*. Bulletin of new medical Technologies 2010. V.17, N3. P. 158-160. (in Russian)]
- 5. Королюк М.А. Метод определения активности каталазы // Лабораторное дело 1988. №1. –С. 16 19. [Korolyuk M.A. *Laboratornoe delo*. Laboratory work. 1988. N1. P. 16-19. (in Russian)]
- 6. Левичкин В.Д., Павлюченко И.И., Каде А.Х. и др. Характеристика сдвигов в системе про-/антиоксиданты у крыс с моделью острой локальной церебральной ишемии // Фундаментальные исследования. − 2013. − № 9-4. − С. 683-686. [Levichkin V.D., Pavlyuchenko I.I., Kade A.H. i dr. *Fundamental'nye issledovaniya*. Basic research. 2013. N9-4, − P. 683-686 (in Russian)]
- 7. Луговой И.С., Кодониди И.П., Воронков А.В. и др. Целенаправленный синтез n-пептидных производных пиримидин-4(1н)-она, обладающих церебропротекторными свойствами // Журнал научных статей Здоровье и образование в XXI веке. 2017. Т.19, №8. С. 195-199. [Lugovoj I.S., Kodonidi I.P., Voronkov A.V. i dr. *Zhurnal nauchnyh statej Zdorov'e i obrazovanie v XXI veke*. Journal of scientific articles Health and Education in the XXI century. 2017. V.19, №8. Р. 195-199. (in Russian)]
- 8. Стальная И.Д., Гаришвили Т.Г. Метод определения малонового диальдегида с помощью ТБК// Современные методы в биохимии. М.: Медицина, 1977 С. 44-46. [Stal`naya I.D., Garishvili T.G. Sovremenny`e metody` v bioximii. Modern methods in biochemistry. М.: Medicine, 1977 Р. 44-46. (in Russian)]
- 9. Федин А.И., Тютюмова Е.А., Бадалян К.Р. Ишемический каскад в остром периоде инсульта и способы его коррекции // Фарматека. 2017. №.9. С. 99-104. [Fedin A.I., Tyutyumova E.A., Badalyan K.R. *Farmateka*. Pharmateca 2017. N9. P. 99-104. (in Russian)]
- 10. Чумаков В.Н., Осинская Л.Ф. Количественный метод определения активности цинк-,медь-зависимой супероксиддисмутазы в биологическом материале // Вопросы медицинской химии. 1977. №5. С. 712-716. [Chumakov V.N., Osinskaya L.F. *Voprosy medicinskoj himii*. Questions of medical chemistry. 1977. №5. Р. 712-716. (in Russian)]
- 11. Ahn J.H., Shin M.C., Kim D.W., Kim H., et al. Antioxidant properties of fucoidan alleviate acceleration and exacerbation of hippocampal neuronal death following transient global cerebral ischemia in high-fat diet-induced obese gerbils // International journal of molecular sciences. 2019. V.20, N3. P. 554. DOI: 10.3390/ijms20030554
- 12. Amudha M., Rani S. Evaluation of in vitro antioxidant potential of Cordia retusa // Indian journal of pharmaceutical sciences. 2016. V.78, N1. P. 80-86. DOI: 10.4103/0250-474x.180253
- 13. Bederson J.B., Pitts L.H., Tsuji M., Nishimura M.C. et al. Rat Middle Cerebral Artery Occlusion: Evaluation of the Model and Development of a Neurologic Examination // Stroke. 1986. V.17. P. 472-476. DOI: 10.1161/01.STR.17.3.472
- 14. Marcocci L., Maguire J.J., Droy-Lefaix M.T., Packer L. The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761 // Biochemical and biophysical research communications. 1994. V.201, N2. P. 748–755. DOI: 10.1006/bbrc.1994.1764
- 15. Pierce S., Tappel A.L. Glutathione peroxidase activities from rat liver // Biochimica et Biophysica Acta (BBA)-Enzymology. 1978. V.523, N1. P. 27-36. DOI: 10.1016/0005-2744(78)90005-0
- 16. Voronkov A.V., Shabanova N.B., Voronkova M.P. et al. Antihypoxic activity of pyrimidine derivative PIR-9 in hypobaric hypoxia in mice // Arhiv Evromedica. 2019. V.9, N3. P. 20-21. DOI: 10.35630/2199-885X/2019/9/3.6
- 17. Winterbourn C.C., Hawkins R.E., Brian M., Carrell R.W. The estimation of red cell superoxide dismutase activity // The Journal of laboratory and clinical medicine. 1975. V.85, N2. P. 337–341.
- 18. Zhang R., Xu M., Wang Y., Xie F. et al. Nrf2 a promising therapeutic target for defensing against oxidative stress in stroke // Molecular Neurobiology. 2017. V.54, N8. P. 6006-6017. DOI: 10.1007/s12035-016-0111-0

Информация об авторах

Шабанова Наталья Борисовна – кандидат фармацевтических наук, старший преподаватель кафедры фармакологии с курсом клинической фармакологии Пятигорский медико-фармацевтический институт – филиал ФГБОУ ВО ВолгГМУ Минздрава России. E-mail: vahlushina@mail.ru

Геращенко Анастасия Дмитриевна – кандидат фармацевтических наук, старший преподаватель кафедры фармакологии с курсом клинической фармакологии Пятигорский медико-фармацевтический институт – филиал ФГБОУ ВО ВолгГМУ Минздрава России. E-mail: anastasia_gerashchenko@mail.ru

Лысенко Татьяна Александровна – кандидат фармацевтических наук, старший преподаватель кафедры фармакологии с курсом клинической фармакологии Пятигорский медико-фармацевтический институт – филиал ФГБОУ ВО ВолгГМУ Минздрава России. E-mail: Lisenko_1956@mail.ru

Воронков Андрей Владиславович – доктор медицинских наук, профессор, директор медицинского колледжа Волгоградского государственного медицинского университета Минздрава России. E-mail: prohor.77@mail.ru

Конфликт интересов: авторы заявляют об отсутствии конфликта интересов.